中文版   |   English Version

首页  /  新闻中心  /  学术活动  /  正文

校庆系列讲座通知:Networked Large-Scale Sensing over Complex Systems

发布时间:2015-06-01 21:08  出处:   浏览:

应网络与交换技术国家重点实验室和泛网无线通信教育部重点实验室的邀请,美国德州农工大学(Texas A&M University)Shuguang (Robert) Cui教授于2015年6月5日访问我校并作学术报告。

 

报告题目:Networked Large-Scale Sensing over Complex Systems

主讲人:Prof. Shuguang (Robert) Cui(Fellow,IEEE)

主持人:张平教授

时间:2015年6月5日(星期五)上午9:00–11:00

地点:校办公楼501报告厅

Abstract:

Data intelligence is the core building block for any modern and future cyber-physical systems, and it involves three major aspects: data processing, data storage, and data communication. Interesting and challenging research problems could be formulated over the interactions among the above three aspects in the context of cyber-physical systems. In this talk, we focus on one such interaction between data processing and data communication, to solve a specific problem on networked large-scale sensing, where data processing has to be performed in a distributed fashion over a communication network. In particular, we seek good estimates of the randomly-varying state process in a dynamic cyber-physical system, at multiple distributed sensing nodes, each of them only having a partial observation of the overall state. We allow nodes to talk with neighbors defined over a communication graph, where we introduce a communication rate constraint on the average number of message exchanges allowed across the network per unit time. In a distributed Kalman filtering framework, we establish the consensus result to show that the respective error variance at each distributed node converges weakly in distribution. In addition, with large deviation analysis, we could show that such a distribution collapses to a Dirac measure (i.e., the error performance achieved by the ideal centralized Kalman filter) exponentially fast as we increase the network communication rate. To further satisfy more practical communication requirements, we then extend the result to the case with quantized message exchanges, with similar convergence results established. Towards the end of the talk, I will briefly mention another result on the interaction between data storage and data communication.

 

该讲座为北京邮电大学60周年校庆系列讲座之一,欢迎全校师生踊跃参加。

 

 

校学术委员会
网络技术研究院,信息与通信工程学院
网络与交换技术国家重点实验室,泛网无线通信教育部重点实验室

2015年6月1日

主讲人简介:

崔曙光于2005年获得斯坦福大学的电子工程博士学位。现任德州农工大学电子与计算机工程系的教授。他当前的研究兴趣集中在数据导向的大规模信息分析与系统设计,包括大规模分布式估计与监测,基于信息论的海量数据集分析,复杂物理信息系统设计以及认知通信网络优化。他的研究成果受到广泛的引用。截止2014年2月16日在Web of Science中,他有8篇文章处于同期相应期刊发表的文章中引用率排名的前十(其中一篇排名第一,三篇排名第二)。在2014年,入选路透社高引用率研究者,并被选为ScienceWatch最具影响力的科学头脑。他被授予IEEE Signal Processing Society 2012年度最佳论文奖。他曾经为多个IEEE会议担任TPC联合主席。他曾经也作为IEEE Signal Processing Magazine的邻域编辑以及IEEE Transactions on Big Data, IEEE JASC Serien on Green Communications and Networking、IEEE Transactions on Signal Processing和IEEE Transactions on Wireless Communications的副编辑。他是IEEE Signal Processing Society SPCOM的技术委员会成员(2009~2014)以及IEEE无线技术委员会的副主席(2015~2016)。他是IEEE Transaction on Big Data筹备委员会以及IEEE ComSoc新兴技术委员会成员。他于2013年被选为IEEE Fellow,同时他是IEEE ComSoc特聘讲师。